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Twisted quantum affine superalgebraUq[sl(2|2)(2)],
Uq[osp(2|2)] invariant R-matrices and a new integrable
electronic model
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Ioannis Tsohantjis‡
† Department of Mathematics, University of Queensland, Brisbane, Queensland 4072, Australia
‡ Department of Physics, University of Tasmania, Hobart, Tasmania 7001, Australia

Received 26 February 1997

Abstract. We describe the twisted affine superalgebrasl(2|2)(2) and its quantized version
Uq [sl(2|2)(2)]. We investigate the tensor product representation of the four-dimensional grade
star representation for the fixed-point subsuperalgebraUq [osp(2|2)]. We work out the tensor
product decomposition explicitly and find that the decomposition is not completely reducible.
Associated with this four-dimensional grade star representation we derive twoUq [osp(2|2)]
invariantR-matrices: one of them corresponds toUq [sl(2|2)(2)] and the other toUq [osp(2|2)(1)].
Using theR-matrix for Uq [sl(2|2)(2)], we construct a newUq [osp(2|2)] invariant strongly
correlated electronic model, which is integrable in one dimension. Interestingly this model
reduces in theq = 1 limit, to the one proposed by Essleret al which has a largersl(2|2)
symmetry.

1. Introduction

Quantum affine algebras describe the underlying symmetries of integrable systems,
conformal field theories, exactly solvable models and integrable quantum field theories.
Quantum affine superalgebras areZ2-graded generalizations [1, 2] of the bosonic quantum
algebras and are mathematical objects of importance in the study of supersymmetric theories.
Examples are supersymmetric lattice models of strongly correlated electrons such as the
supersymmetrict-J model [3], the extended Hubbard model [4] and the supersymmetric
U model proposed in [5] and exactly solved in [6]. In each case these models are derived
from anR-matrix satisfying the Yang–Baxter equation. The construction of theseR-matrices
can be achieved within the framework of the quantum affine superalgebras.

Despite their significance, quantum affine superalgebras have so far remained largely
ignored in the literature. This is particularly the case for the twisted quantum affine
superalgebras. In this paper we will study the twisted affine superalgebraUq [sl(2|2)(2)]
and one interesting representation for its fixed-point subsuperalgebraUq [osp(2|2)].

Lie superalgebras are much richer structures and have a more complicated representation
theory than their bosonic counterparts [1, 7]. For instance, a given Lie superalgebra allows
many inequivalent systems of simple roots and these give rise to different Hopf algebras
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upon deformation. As will be seen below, one has to work with the non-standard simple
root system ofsl(2|2) to obtain the twisted superalgebrasl(2|2)(2).

For every pair of finite-dimensional irreps of a quantum affine superalgebra there exists a
solution to the Yang–Baxter equation [8]. In a recent paper [9] we showed how to construct
R-matrices for twisted bosonic quantum algebras. Our work has immediately been taken up
and generalized by the authors in [10]. For the type of irrep considered in the present paper,
however, care must be taken since the tensor product decomposition of two such irreps is
not completely reducible. This problem is solved by introducing a nilpotent operator of
order two. Using this approach, we will determine the spectral dependentR-matrices for
Uq [sl(2|2)(2)] andUq [osp(2|2)(1)].

The R-matrix for Uq [sl(2|2)(2)] has an interesting feature that in the rational limit it
becomessl(2|2) invariant. Using thisR-matrix, we will derive a newUq [osp(2|2)] invariant
model of strongly correlated electrons which is integrable on a one-dimensional lattice. This
model has different interaction terms from the ones in the models [3–5].

This paper is organized as follows. In sections 2 and 3, we study the twisted
affine superalgebrasl(2|2)(2) and its quantized versionUq [sl(2|2)(2)], respectively. The
tensor product representation of the four-dimensional grade star representation for the fixed
subsuperalgebraUq [osp(2|2)] is also investigated in detail and the basis and its dual for
this irrep is constructed explicitly. In section 4 we derive theR-matrix associated with the
four-dimensional irrep ofUq [sl(2|2)(2)]. Using thisR-matrix, we propose, in section 5, a
new model of strongly correlated electrons which is exactly solvable on a one-dimensional
lattice. In section 6 we rederive theR-matrix associated withUq [osp(2|2)(1)]. In section 7
we give some concluding remarks.

2. Twisted affine superalgebrasl(2|2)(2)

We recall the relevant information about twisted affine superalgebras [1, 11]. LetL be a
finite-dimensional simple Lie superalgebra andτ a diagram automorphism ofL of orderk.
Associated with these one constructs the twisted affine superalgebraL(k). In this paper we
will assumek = 2. LetL0 be the fixed-point subalgebra under the diagram automorphismσ .
We recall that

L = L0⊕ L1 [Li, Lj ] = L(i+j)mod2. (2.1)

L1 gives rise to aL0-module under the adjoint action ofL0. Let θ0 be its highest weight.
Let us considerL = sl(2|2), whose generators we denote asEij , i, j = 1, 2, 3, 4. We

choose the grading [1]= [4] = 0 and [2]= [3] = 1. The sl(2|2) generators satisfy the
graded commutation relations

[Eij , E
k
l ] = δkj Eil − (−1)([i]+[j ])([k]+[l])δil E

k
j . (2.2)

We work with the non-standard root system ofsl(2|2). Then the associated Dynkin diagram
has an automorphismτ of order 2 [2]. Underτ the root vectors associated with this diagram,
which areE1

3, E3
2 andE2

4, transform in the following fashion:

τ(E1
3) = E2

4 τ(E3
2) = E3

2 τ(E2
4) = E1

3. (2.3)

This, together with relations

τ(E1
1) = −E4

4 τ(E2
2) = −E3

3 τ(E3
3) = −E2

2 τ(E4
4) = −E1

1 (2.4)
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leads us to define the following transformation rules for other generators in order that the
graded commutation relations are invariant under the automorphism:

τ(E1
2) = −E3

4 τ(E1
4) = −E1

4 τ(E3
4) = −E1

2 τ(E2
3) = E2

3

τ(E3
1) = −E4

2 τ(E4
2) = −E3

1 τ(E2
1) = E4

3 τ(E4
1) = −E4

1

τ(E4
3) = E2

1. (2.5)

With respect to the eigenvectors ofτ we have the decompositionsl(2|2) = sl(2|2)0 ⊕
sl(2|2)1, where

sl(2|2)0 = {X ∈ sl(2|2), τ (X) = X} = {E2
2 − E3

3, E
2
3, E

3
2,

1
2(E

3
3 + E4

4 − E1
1 − E2

2),

1√
2
(−E1

2 + E3
4),

1√
2
(E2

1 + E4
3),

1√
2
(E1

3 + E2
4),

1√
2
(−E3

1 + E4
2)}

sl(2|2)1 = {X ∈ sl(2|2), τ (X) = −X} = {iE1
4, iE4

1,
1√
2
(E1

2 + E3
4),

1√
2
(−E2

1 + E4
3),

1√
2
(−E1

3 + E2
4),

1√
2
(E3

1 + E4
2), E

1
1 + E2

2 + E3
3 + E4

4}. (2.6)

It is easily seen that the fixed-point subsuperalgebrasl(2|2)0 is nothing butosp(2|2) =
sl(2|1).

We recall thatsl(2|2) admits Chevalley generators{Ei, Fi,Hi, i = 0, 1, 2}:
E1 = E2

3 F1 = E3
2 H1 = E2

2 − E3
3 E2 = 1√

2
(−E1

2 + E3
4)

F2 = 1√
2
(E2

1 + E4
3) H2 = 1

2(E
3
3 + E4

4 − E1
1 − E2

2) E0 = iE4
1

F0 = iE1
4 H0 = E1

1 − E4
4. (2.7)

Here Ei , Fi , Hi , i = 1, 2, form the Chevalley generators forsl(2|2)0. E0 ∈ sl(2|2)1
corresponds to the minimal weight vector and thus has weight−θ0. It follows that
H0 = −n1H1 − n2H2 lies in the Cartan subalgebraH of sl(2|2)0. The integersn1, n2

are known as the Kac labels ofsl(2|2)(2).
We now introduce the corresponding twisted affine superalgebrasl(2|2)(2) which admits

the decomposition

sl(2|2)(2) =
⊕
m∈ 1

2Z

Lm ⊕ Cc0 Lm =
{
L0(m),m ∈ Z
L1(m),m ∈ Z+ 1

2

(2.8)

with La(m) = {X(m)|x ∈ La}, a = 0, 1 andc0 a central charge. The graded Lie bracket is
given by

[X(m), Y (n)] = [X, Y ](m+ n)+mc0δm+n,0(X, Y ) [c0, X(m)] = 0. (2.9)

Here ( , ) is the fixed invariant bilinear form onsl(2|2). A suitable set of generators for
sl(2|2)(2) is given by

ei = Ei(0) hi = Hi(0) fi = Fi(0) i = 1, 2

e0 = E0(1/2) h0 = H0(0)+ c0/2 f0 = F0(−1/2). (2.10)

These simple generators satisfy the defining relations ofsl(2|2)(2):
[ei, fj ] = δijhi e2

2 = 0= f 2
2

[h0, e0] = −2e0 [h0, e1] = 0 [h0, e2] = e2

[h1, e0] = 0 [h1, e1] = 2e1 [h1, e2] = −e2

[h2, e0] = e0 [h2, e1] = −e1 [h2, e2] = 0

[h0, f0] = 2f0 [h0, f1] = 0 [h0, f2] = −f2
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[h1, f0] = 0 [h1, f1] = −2f1 [h1, f2] = f2

[h2, f0] = −f0 [h2, f1] = f1 [h2, f2] = 0

(ade1)
2e2 = (ade0)e1 = (ade0)

2e2 = 0

(adf1)
2f2 = (adf0)f1 = (adf0)

2f2 = 0. (2.11)

We have an algebra homomorphism, called theevaluation map, evx : U [sl(2|2)(2)] →
C[x, x−1]⊗U [sl(2|2)], with U [sl(2|2)(2)], U [sl(2|2)] the enveloping algebras ofsl(2|2)(2),
sl(2|2) respectively, given by

evx(X(m)) = x2mX evx(c0) = 0 (2.12)

and extended to all ofU [sl(2|2)(2)] in the natural way. Thus given a finite-dimensional
sl(2|2)-moduleV carrying a representationπ we have a correspondingsl(2|2)(2) module
V (x) = C[x, x−1] ⊗ V carrying theloop representationπ̂ given by

π̂ = (1⊗ π)evx. (2.13)

Below we will see how such representations ofosp(2|2) can be quantized to give solutions
of the Yang–Baxter equation.

3. Uq[sl(2|2)(2)]

Corresponding to the twisted affine algebrasl(2|2)(2) we have the twisted quantum affine
algebraUq [sl(2|2)(2)] with generatorsq±hi/2, ei , fi , (i = 0, 1, 2) and defining relations

[ei, fj ] = δij q
hi − q−hi
q − q−1

e2
2 = 0= f 2

2

qh0e0q
−h0 = q−2e0 qh0e1q

−h0 = e1 qh0e2q
−h0 = qe2

qh1e0q
−h1 = e0 qh1e1q

−h1 = q2e1 qh1e2q
−h1 = q−1e2

qh2e0q
−h2 = qe0 qh2e1q

−h2 = q−1e1 qh2e2q
−h2 = e2

qh0f0q
−h0 = q2f0 qh0f1q

−h0 = f1 qh0f2q
−h0 = q−1f2

qh1f0q
−h1 = f0 qh1f1q

−h1 = q−2f1 qh1f2q
−h1 = qf2

qh2f0q
−h2 = q−1f0 qh2f1q

−h2 = qf1 qh2f2q
−h2 = f2

e0e1− e1e0 = 0 e2
0e2+ e2e

2
0 − (q + q−1)e0e2e0 = 0

e2
1e2+ e2e

2
1 − (q + q−1)e1e2e1 = 0

f0f1− f1f0 = 0 f 2
0 f2+ f2f

2
0 − (q + q−1)f0f2f0 = 0

f 2
1 f2+ f2f

2
1 − (q + q−1)f1f2f1 = 0. (3.1)

Throughout this paper we will assume thatq is generic, i.e. not a root of unity and
[n]q = (qn − q−n)/(q − q−1).

The algebraUq [sl(2|2)(2)] is a Hopf algebra. The coproduct is given by

1(q±h) = q±h ⊗ q±h 1(ei) = ei ⊗ q−hi/2+ qhi/2⊗ ei
1(fi) = fi ⊗ q−hi/2+ qhi/2⊗ fi. (3.2)

We omit the formulae for the antipode and the counit. The multiplication rule for the
tensor product is defined for elementsa, b, c, d ∈ Uq [sl(2|2)(2)] by

(a ⊗ b)(c ⊗ d) = (−1)[b][c](ac ⊗ bd). (3.3)

The (minimal) four-dimensional irreducible representation ofUq [sl(2|2)] is undeformed.
That is the representation matrices for the fundamental generators are the same as in
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the classical case. Choosing a basis|4〉 = (0, 0, 0, 1)t , |3〉 = (0, 0, 1, 0)t , |2〉 =
(0, 1, 0, 0)t , |1〉 = (1, 0, 0, 0)t , with |1〉, |4〉 even (bosonic) and|2〉, |3〉 odd (fermionic), the
representation matrices areEij = eij , where(eij )

k
l = δikδjl . Using theUq [sl(2|2)] generators

{Ei, Fi, Hi, i = 0, 1, 2} this representation is written as

E1 = e2
3 F1 = e3

2 H1 = e2
2 − e3

3

E2 =
√

[1/2]q(−e1
2 + e3

4) F2 =
√

[1/2]q(e
2
1 + e4

3) H2 = 1
2(e

3
3 + e4

4 − e1
1 − e2

2)

E0 = ie4
1 F0 = ie1

4 H0 = e1
1 − e4

4. (3.4)

It can be shown that there exists an evaluation representation ofUq [sl(2|2)(2)] given by

ei = Ei fi = Fi hi = Hi i = 1, 2 e0 = xE0 f0 = x−1F0

h0 = H0. (3.5)

The four-dimensional representation ofUq [sl(2|2)] is also irreducible under the
Uq [osp(2|2)] subsuperalgebra. We call such a representationUq [osp(2|2)]-irreducible.
Equation (3.5) implies that this irreducible four-dimensionalUq [osp(2|2)]-module, denoted
as V in what follows, is affinizable to also provide an irreducibleUq [sl(2|2)(2)]
representation. As in the classical case [7], the tensor product of two suchUq [osp(2|2)]-
irreducible representations is not completely reducible. This can be seen as follows.
Introduce the graded permutation operatorP on the tensor product moduleV ⊗V such that

P(vα ⊗ vβ) = (−1)[α][β]vβ ⊗ vα ∀vα, vβ ∈ V. (3.6)

We decompose the tensor product as

V ⊗ V = W+ ⊕W− (3.7)

with W± being eigenspaces ofP in the q = 1 limit

W± =
{
v ∈ V ⊗ V | lim

q→1
(P ∓ 1)v = 0

}
. (3.8)

It is easy to check that the states

|ψ−1 〉 =
1√

q1/2+ q−1/2
(q1/4|1〉 ⊗ |2〉 − q−1/4|2〉 ⊗ |1〉)

|ψ−2 〉 =
1√

q1/2+ q−1/2
(q1/4|1〉 ⊗ |3〉 − q−1/4|3〉 ⊗ |1〉)

|ψ−3 〉 = |2〉 ⊗ |2〉
|z〉 = 1

2
(|1〉 ⊗ |4〉 − |4〉 ⊗ |1〉 + |2〉 ⊗ |3〉 + |3〉 ⊗ |2〉)

|w〉 = 1√
q + q−1

(q1/2|2〉 ⊗ |3〉 + q−1/2|3〉 ⊗ |2〉)

|ψ−6 〉 = |3〉 ⊗ |3〉
|ψ−7 〉 =

1√
q1/2+ q−1/2

(q1/4|2〉 ⊗ |4〉 − q−1/4|4〉 ⊗ |2〉)

|ψ−8 〉 =
1√

q1/2+ q−1/2
(q1/4|3〉 ⊗ |4〉 − q−1/4|4〉 ⊗ |3〉) (3.9)

span the invariant subspaceW−, and we set

〈ψ−| = (|ψ−〉)† |ψ−〉 = |ψ−k 〉, |z〉, |w〉 (3.10)
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where

(|β〉 ⊗ |γ 〉)† = (−1)[|β〉][ |γ 〉](|β〉)† ⊗ (|γ 〉)†
(|β〉)† = 〈β| ∀β = 1, 2, 3, 4. (3.11)

Notice that the states|z〉 and |w〉 are not orthonormal to each other. The remaining states
are combined as follows

|ψ+1 〉 = |1〉 ⊗ |1〉
|ψ+2 〉 =

1√
q1/2+ q−1/2

(q−1/4|1〉 ⊗ |2〉 + q1/4|2〉 ⊗ |1〉)

|ψ+3 〉 =
1√

q1/2+ q−1/2
(q−1/4|1〉 ⊗ |3〉 + q1/4|3〉 ⊗ |1〉)

|s〉 = 1√
2(q + q−1)

(q−1/2|1〉 ⊗ |4〉 + q1/2|4〉 ⊗ |1〉 + q−1/2|2〉 ⊗ |3〉 − q1/2|3〉 ⊗ |2〉)

|c〉 = 1√
2(q2+ 1)(3− 2q + 3q2)

((2q2− q + 1)|1〉 ⊗ |4〉 + (q2− q + 2)|4〉 ⊗ |1〉

−(q + 1)|2〉 ⊗ |3〉 + q(q + 1)|3〉 ⊗ |2〉)
|ψ+6 〉 =

1√
q1/2+ q−1/2

(q−1/4|2〉 ⊗ |4〉 + q1/4|4〉 ⊗ |2〉)

|ψ+7 〉 =
1√

q1/2+ q−1/2
(q−1/4|3〉 ⊗ |4〉 + q1/4|4〉 ⊗ |3〉)

|ψ+8 〉 = |4〉 ⊗ |4〉 (3.12)

where, as above, we have used〈ψ+| = (|ψ+〉)†, where|ψ+〉 stands for|ψ+k 〉, |s〉, |c〉.
One can show that: (i) the eight states (3.2) span the invariant subspaceW+ and |c〉

is a cyclic vector for the corresponding representation; (ii)|s〉 spans a one-dimensional
invariant subspace, i.e. it is mapped into zero by all generators ofUq [osp(2|2)]. However,
the singlet state|s〉 is not separable from the representation. Therefore the tensor product
is not completely reducible.

Recall that|z〉, |w〉, |s〉 and |c〉 are not orthonormal to each other. Let us construct the
dual of these states. Denote

|ψ1〉 ≡ |z〉 |ψ2〉 ≡ |w〉 |ψ3〉 ≡ |s〉 |ψ4〉 ≡ |c〉 (3.13)

and define a metricgij :

gij = 〈ψi |ψj 〉 i, j = 1, 2, 3, 4. (3.14)

It is easily shown that

g11 = g22 = g33 = g44 = 1 g12 = g21 = q1/2+ q−1/2

2
√
q + q−1

g13 = g31 = q−1/2− q1/2√
2(q + q−1)

g23 = g32 = g24 = g42 = 0

g34 = g43 = 0 g14 = g41 = q2− 1√
2(q2+ 1)(3− 2q + 3q2)

. (3.15)

We can define dual states as follows

〈ψi | = gij 〈ψj | (gij ) = (gij )−1 (3.16)
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where summation on the repeated indexj is implied. A long exercise leads to

〈ψ1| = 2

(1+ q)2 ((1+ q
2)(〈1| ⊗ 〈4| − 〈4| ⊗ 〈1|)+ (1− q)(〈2| ⊗ 〈3| − q〈3| ⊗ 〈2|))

〈ψ2| =
√

1+ q2

1+ q (−〈1| ⊗ 〈4| + 〈4| ⊗ 〈1| − 〈2| ⊗ 〈3| − 〈3| ⊗ 〈2|)

〈ψ3| = 1

(1+ q)2
√

2(q2+ 1)
((−1+ 4q − q2+ 2q3)〈1| ⊗ 〈4|

+(2− q + 4q2− q3)〈4| ⊗ 〈1| − (3− 2q + 3q2)(〈2| ⊗ 〈3| − q〈3| ⊗ 〈2|))

〈ψ4| =
√

3− 2q + 3q2

2(q2+ 1)

1

1+ q (〈1| ⊗ 〈4| + q〈4| ⊗ 〈1| + 〈2| ⊗ 〈3| − q〈3| ⊗ 〈2|). (3.17)

We remark that〈ψ4| spans a one-dimensional right submodule under the quantum group
action.

4. R-matrix for Uq[sl(2|2)(2)]

With an abuse of notation, in this section we sete0 = ie4
1, f0 = ie1

4 andh0 = e1
1 − e4

4. It
can be shown [8] that a solution to the linear equations

R(x)1(a) = 1̄(a)R(x) ∀a ∈ Uq [osp(2|2)]
R(x)(xe0⊗ q−h0/2+ qh0/2⊗ e0) = (xe0⊗ qh0/2+ q−h0/2⊗ e0)R(x) (4.1)

satisfies the QYBE

R12(x)R13(xy)R23(y) = R23(y)R13(xy)R12(x). (4.2)

In the above,1̄ = T · 1, with T the twist map defined byT (a ⊗ b) = (−1)[a][b]b ⊗ a,
∀a, b ∈ Uq [osp(2|2)] and also, ifR(x) = ∑i ai ⊗ bi , thenR12(x) =

∑
i ai ⊗ bi ⊗ I etc.

The solution to (4.1) is unique, up to scalar functions. The multiplicative spectral parameter
x can be transformed into an additive spectral parameteru by x = exp(u).

In all our equations we implicitly use the ‘graded’ multiplication rule (3.3). Thus the
R-matrix of a quantum superalgebra satisfies a ‘graded’ QYBE which, when written as an
ordinary matrix equation, contains extra signs:

R(x)
i ′j ′
ij R(xy)

i ′′k′
i ′k R(y)

j ′′k′′
j ′k′ (−1)[i][j ]+[k][ i ′]+[k′][j ′]

= R(y)j ′k′jk R(xy)
i ′k′′
ik′ R(x)

i ′′j ′′
i ′j ′ (−1)[j ][k]+[k′][ i]+[j ′][ i ′] . (4.3)

However after a redefinition

R̃(·)i ′j ′ij = R(·)i
′j ′
ij (−1)[i][j ] (4.4)

the signs disappear from the equation. Thus any solution of the ‘graded’ QYBE arising
from theR-matrix of a quantum superalgebra provides also a solution of the standard QYBE
after the redefinition in (4.4).

Set

Ř(x) = PR(x) (4.5)

whereP is the graded permutation operator onV ⊗ V . Then (4.1) can be rewritten as

Ř(x)1(a) = 1(a)Ř(x) ∀a ∈ Uq [osp(2|2)]
Ř(x)(xe0⊗ q−h0/2+ qh0/2⊗ e0) = (e0⊗ q−h0/2+ xqh0/2⊗ e0)Ř(x) (4.6)
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and in terms ofŘ(x) the QYBE becomes

(I ⊗ Ř(x))(Ř(xy)⊗ I )(I ⊗ Ř(y)) = (Ř(y)⊗ I )(I ⊗ Ř(xy))(Ř(x)⊗ I ). (4.7)

Note that this equation, if written in matrix form, does not have extra signs. This is because
the definition of the graded permutation operator in (3.6) includes the signs of (4.4). In the
following we will normalize theR-matrix Ř(x) in such a way thaťR(x)Ř(x−1) = I , which
is usually called the unitarity condition in the literature.

Let us proceed to solvěR(x) satisfying (4.6) forUq [sl(2|2)(2)], that is fore0 = ie4
1,h0 =

e1
1 − e4

4. As we have shown in the last section, the tensor product decomposition is not
completely reducible. Therefore the tensor product graph method developled in [9, 10] is not
applicable to the present case. LetP [±] denote the (central) projection operators defined
by

P [±](V ⊗ V ) = W± (4.8)

andN the operator mapping the cyclic vector ofV ⊗ V to the singletV0 ⊂ W+ ⊂ V ⊗ V .
ObviouslyN is nilpotent of order 2 (i.e.N2 = 0). Using the states from the section,P [±]
andN can be expressed as

P [+] = |ψ+1 〉〈ψ+1 | + |ψ+2 〉〈ψ+2 | + |ψ+3 〉〈ψ+3 | + |ψ+6 〉〈ψ+6 | + |ψ+7 〉〈ψ+7 | + |ψ+8 〉〈ψ+8 |
+|ψ3〉〈ψ3| + |ψ4〉〈ψ4|

P [−] = |ψ−1 〉〈ψ−1 | + |ψ−2 〉〈ψ−2 | + |ψ−3 〉〈ψ−3 | + |ψ−6 〉〈ψ−6 | + |ψ−7 〉〈ψ−7 | + |ψ−8 〉〈ψ−8 |
+|ψ1〉〈ψ1| + |ψ2〉〈ψ2|

N = f (q)|ψ3〉〈ψ4| (4.9)

wheref (q) is an arbitrary factor depending onq. It is worth pointing out thatP [±] and
N are all quantum groupUq [osp(2|2)] invariants. Moreover they satisfy the following
relations

P [±]P [±] = P [±] N2 = 0 P [+]P [−] = P [−]P [+] = 0

P [+]N = NP [+] = N P [−]N = NP [−] = 0

P [+] + P [−] = 1. (4.10)

With the help of these operators, the most generalŘ(x) satisfying the first equation in (4.6)
may be written in the form

Ř(x) = ρ+(x)P [+] + ρN(x)N + ρ−(x)P [−] (4.11)

whereρ±(x), ρN(x), are unknown functions depending onx, q.
Multiplying the second equation in (4.6) byP [+] from the left and the resulting equation

by P [+] from the right, one gets

(ρ+(x)P [+] + ρN(x)N)(xe0⊗ q−h0/2+ qh0/2⊗ e0)P [+]

= P [+](e0⊗ q−h0/2+ xqh0/2⊗ e0)(ρ+(x)P [+] + ρN(x)N) (4.12)

where (4.10) has been used. With the help of (4.9), (3.9), (3.12) and (3.17), one obtains
from the above equation

ρN(x) = 1− q
f (q)

2(q + q−1)√
3− 2q + 3q2

1− x
1+ x ρ+(x). (4.13)

If one multiplies the second equation in (4.6) byP [−] from the left and the resulting
equation byP [+] from the right, one has

ρ−(x)P [−](xe0⊗ q−h0/2+ qh0/2⊗ e0)P [+]

= P [−](e0⊗ q−h0/2+ xqh0/2⊗ e0)(ρ+(x)P [+] + ρN(x)N) (4.14)
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which gives rise to

ρ−(x) = 1− xq
x − q ρ+(x). (4.15)

It follows that

Ř(x) = P [+] + 1− q
f (q)

2(q + q−1)√
3− 2q + 3q2

1− x
1+ xN +

1− xq
x − q P [−]. (4.16)

Remember that the arbitrary factorf (q) in (4.16) cancels out with the same factorf (q)
appearing in the definition ofN .

An interesting feature of thisUq [osp(2|2)] invariant R-matrix is that in the rational
limit the N term disappears from̌R(x) and the resultant rationalR-matrix becomessl(2|2)
invariant: the 36-vertex model reduces to a 28-vertex one in the rational limit!

We would like to point out that Deguchiet al [12] obtained a similarUq [osp(2|2)]
invariantR-matrix using a different approach. However, the Deguchiet al R-matrix appears
to be different from ours in the form of the nilpotent operator. This might be because we are
using a different simple root system forosp(2|2). As is well known, a fixed superalgebra
allows many inequivalent systems of simple roots and these give rise to different Hopf
algebras upon deformation. It is easily seen that in this paper we are using a standard
simple root system forUq [osp(2|2)], while Deguchiet al used a non-standard one. We
have also shown here that theR-matrix actually comes from the twisted quantum affine
superalgebraUq [sl(2|2)(2)].

5. New Uq[osp(2|2)] invariant electronic model

In this section we propose a newUq [osp(2|2)] invariant strongly correlated electronic model
on the unrestricted 4L-dimensional electronic Hilbert space⊗Ln=1C4, whereL is the lattice
length. This model has different interaction terms from previous ones introduced in [3–5].

We recall that electrons on a lattice are described by canonical Fermi operatorsci,σ

and c†i,σ satisfying the anti-commutation relations given by{c†i,σ , cj,τ } = δij δστ , where
i, j = 1, 2, . . . , L andσ, τ =↑,↓. The operatorci,σ annihilates an electron of spinσ at
site i, which implies that the Fock vacuum|0〉 satisfiesci,σ |0〉 = 0. At a given lattice sitei
there are four possible electronic states:

|0〉 |↑〉i = c†i,↑|0〉 |↓〉i = c†i,↓|0〉 |↑↓〉i = c†i,↓c†i,↑|0〉. (5.1)

By ni,σ = c†i,σ ci,σ we denote the number operator for electrons with spinσ on sitei, and we
write ni = ni,↑+ni,↓. The spin operatorsS, S†, Sz, (in the following, the global operatorO
will be always expressed in terms of the local oneOi asO =∑L

i=1Oi in one dimension)

Si = c†i,↑ci,↓ S
†
i = c†i,↓ci,↑ Szi = 1

2(ni,↓ − ni,↑) (5.2)

form ansl(2) algebra and they commute with the Hamiltonians that we consider below.
Using theR-matrix (4.16) and denoting

Ři,i+1(x) = I ⊗ · · · I ⊗ Ř(x)︸︷︷︸
i i+1

⊗I ⊗ · · · ⊗ I (5.3)

one may define the local Hamiltonian

Hi,i+1 = d

dx
Ři,i+1(x)

∣∣∣∣
x=1

. (5.4)
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By (4.9), (3.9), (3.12) and (3.17) and choosing

|4〉 ≡ |0〉 |3〉 ≡ |↓〉 |2〉 ≡ |↑〉 |1〉 ≡ |↑↓〉 (5.5)

one gets, after tedious but straightforward manipulation,

H ≡
∑
〈i,j〉

Hi,j

Hi,j = −c†i,↑cj,↑
[

1− ni,↓ − nj,↓ − 1

2
(q1/2− q−1/2)(ni,↓(1− nj,↓)+ nj,↓(1− ni,↓))

]
+c†i,↓cj,↓

[
1− ni,↑ − nj,↑ − 1

2
(q1/2− q−1/2)

×(q(1− ni,↑)nj,↑ + q−1ni,↑(1− nj,↑))
]

+c†j,↑ci,↑
[

1− ni,↓ − nj,↓ + 1

2
(q1/2− q−1/2)

×(ni,↓(1− nj,↓)+ nj,↓(1− ni,↓))
]

+c†j,↓ci,↓
[

1− ni,↑ − nj,↑ + 1

2
(q1/2− q−1/2)

×(q(1− ni,↑)nj,↑ + q−1ni,↑(1− nj,↑))
]

+1

2
(q1/2+ q−1/2)(S

†
i Sj + S†j Si − q−1ni,↑nj,↓ − qni,↓nj,↑)

−1

2
(q1/2+ q−1/2)(c

†
i,↑c
†
i,↓cj,↓cj,↑ + h.c.+ (q − q−1)ni,↑nj,↑(nj,↓ − ni,↓))

+ q−2− 2q − 3

2(q1/2+ q−1/2)
ni,↑ni,↓ + q2− 2q−1− 3

2(q1/2+ q−1/2)
nj,↑nj,↓

+q1/2(ni,↑ + ni,↓)+ q−1/2(nj,↑ + nj,↓) (5.6)

where 〈i, j〉 denote nearest-neighour links on the lattice. In deriving (5.6), use has been
made of the following identities

|0〉〈0| + |↓〉〈↓| + |↑〉〈↑| + |↑↓〉〈↑↓| = 1 |↑↓〉〈↑↓| = n↑n↓
|↑〉〈↑| = n↑ − n↑n↓ |↓〉〈↓| = n↓ − n↑n↓. (5.7)

Our Hamiltonian is supersymmetric and the supersymmetry algebra isUq [osp(2|2)].
The global Hamiltonian commutes with global number operators of spin up and spin down,
respectively. Moreover, the model is exactly solvable on the one-dimensional lattice.

In the q = 1 limit, our model reduces to one proposed by Essleret al [4] which has a
larger,sl(2|2), symmetry.

6. Uq[osp(2|2)(1)] R-matrix revisited

The four-dimensional grade star irrep ofUq [osp(2|2)] can also be extended to carry an
irreducible representation of the untwisted quantum affine superalgebraUq [osp(2|2)(1)]. In
this casee0 andf0 are odd and given by

e0 =
√

[1/2]q(−e3
1 + e4

2) f0 = −
√

[1/2]q(e
1
3 + e2

4)

h0 = − 1
2(e

2
2 + e4

4 − e1
1 − e3

3). (6.1)
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Denote theR-matrix in the present case by̌Rut(x). In principal, thisR-matrix can be
obtained by carefully taking theα = − 1

2 limit of the correspondingR-matrix found in [13].
Here we rederive it more rigorously.

With the explicit expression (6.1) ofe0, f0 andh0, and writing the most generaľRut(x)

as the form

Řut(x) = %+(x)P [+] + %N(x)N + %−(x)P [−] (6.2)

the Jimbo equations

Řut(x)1(a) = 1(a)Řut(x) ∀a ∈ Uq [osp(2|2)]
Řut(x)(xe0⊗ q−h0/2+ qh0/2⊗ e0) = (e0⊗ q−h0/2+ xqh0/2⊗ e0)Řut(x) (6.3)

can be solved by direct computations, as we did in the previous section. Here we proceed
a bit differently. We recall that the braid generatorσ , which satisfies the first equation in
(6.3) and the relation

σ(e0⊗ q−h0/2) = (qh0/2⊗ e0)σ (6.4)

is given by taking thex →∞ limit of Řut(x)

σ = Řut(∞) = %+(∞)P [+] + %N(∞)N + %−(∞)P [−]. (6.5)

On the other hand, the braid generator can also be obtained by taking thex →∞ limit of
Ř(x) in the twisted case:

σ = Ř(∞) = P [+] − 1− q
f (q)

2(q + q−1)√
3− 2q + 3q2

N − qP [−]. (6.6)

Comparing the above twoσs, one gets

%+(∞) = 1 %−(∞) = −q %N(∞) = −1− q
f (q)

2(q + q−1)√
3− 2q + 3q2

. (6.7)

Multiply the second equation in (6.3) byP [+] from the left and the resulting equation by
P [−] from the right, one obtains

(%+(x)P [+] + %N(x)N)(xe0⊗ q−h0/2+ qh0/2⊗ e0)P [−]

= %−(x)P [+](e0⊗ q−h0/2+ xqh0/2⊗ e0)P [−]. (6.8)

This equation is simplified upon using the relations

P [+](qh0/2⊗ e0)P [−] =
(
%+(∞)
%−(∞)P [+] + %N(∞)

%−(∞)
)
(e0⊗ q−h0/2)P [−]

N(qh0/2⊗ e0)P [−] = %+(∞)
%−(∞)N(e0⊗ q−h0/2)P [−] (6.9)

which are derived from (6.4) by multiplyingP [+] andN from the left, respectively, and
P [−] from the right. The simplified expressions read{(

1+ x %+(∞)
%−(∞)

)
%−(x)−

(
x + %+(∞)

%−(∞)
)
%+(x)

}
P [+](e0⊗ q−h0/2)P [−] = 0{

%N(∞)
%−(∞) (x%−(x)− %+(x))− %N(x)

(
x + %+(∞)

%−(∞)
)}

N(e0⊗ q−h0/2)P [−] = 0. (6.10)

One can easily show that

P [+](e0⊗ q−h0/2)P [−] 6= 0 N(e0⊗ q−h0/2)P [−] 6= 0. (6.11)
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It follows that

%−(x) = x%−(∞)+ %+(∞)
%−(∞)+ x%+(∞)%+(x) =

1− xq
x − q ρ+(x)

%N(x) = %N(∞)
x%−(∞)+ %+(∞) (x%−(x)− %+(x))

= 1− q
f (q)

2(q2+ 1)√
3− 2q + 3q2

(x − 1)(x + 1)

(1− xq)(x − q)ρ+(x) (6.12)

where (6.7) has been used. Thus

Řut(x) = P [+] + 1− q
f (q)

2(q2+ 1)√
3− 2q + 3q2

(x − 1)(x + 1)

(1− xq)(x − q)N +
1− xq
x − q P [−]. (6.13)

TheR-matrix (6.13) also leads to an integrable model of strongly correlated electrons,
which, up to a similarity transformation, is theα = − 1

2 limit of the model proposed in the
second paper of [5].

7. Concluding remarks

We have described the twisted quantum affine superalgebraUq [sl(2|2)(2)] and obtained
the R-matrix Ř(x), corresponding to the four-dimensional irrep, which is invariant under
Uq [osp(2|2)] where osp(2|2) is the fixed-point subsuperalgebra under the automorphism
on sl(2|2). This leads to a new four-state model of strongly correlated electrons for which
the local Hamiltonian was determined explicitly. It hasUq [osp(2|2)] invariance and the
model is exactly solvable in one dimension via the QISM. It is interesting that in the
classical (q → 1) limit, the R-matrix admitssl(2|2) invariance and the corresponding
exactly solvable model reduces to that Essleret al [4].

It was moreover shown that the underlying four-dimensional irrep also gives rise to
anotherUq [osp(2|2)] invariant R-matrix associated with the untwisted quantum affine
superalgebraUq [osp(2|2)(1)]. This R-matrix was determined explicitly and also determines
a four-state model of strongly correlated electrons, exactly solvable in one dimension. This
latter model in fact arises as theα = − 1

2 limit of the model proposed in [5].
The R-matrices determined in this paper exhibit the novel feature of having a

Uq [osp(2|2)] invariant nilpotent component. They give rise to a local Hamiltonian for
a quantum spin chain which is not Hermitian, but nevertheless admits real eigenvalues (for
parameters in the appropriate range). This arises due to the fact that in the reduction of
the tensor product of the four-dimensional irrep with itself intoUq [osp(2|2)] modules,
an indecomposable occurs. New techniques are thus required for the solution of the
corresponding Jimbo equations, as we have shown in the paper. Our approach yields a
new extension of the twisted tensor product graph method introduced in [9].

TheR-matrices, and corresponding exactly solvable models, investigated above are in
fact the simplest in an infinite hierarchy arising from the twisted quantum affine superalgebra
Uq [sl(m|n = 2k)(2)]. SuchR-matrices all admitUq [osp(m|n)] invariance and give rise to
new supersymmetric lattice models, exactly solvable in one dimension. Their study is thus
of great interest, and it is expected that the novel features observed in the case studies of
this paper, will also occur in general. It is hoped that the techiniques we have introduced
will provide a basis for the explicit determination of these more generalR-matrices and
their corresponding lattice models.
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